About the SP&M Lab

The Surface Processes and Modelling Laboratory (SP&M Lab) is a state-of-the-art computational facility established in January 2025, located on the third floor of the Mining and Mineral Resources Building. Funded by the NSF EPSCoR 'Climate Resilience through Multidisciplinary Big Data Learning, Prediction & Building Response Systems (CLIMBS)' award, our lab aims to advance Kentucky's climate resiliency through hazard assessment based on Kentucky-specific scientific research.

Hardware

  • 5x workstations with: 14900KS CPU, 192 GB memory, 1x RTX 4080 Super GPU
  • 2x Alienware with: 285K CPU, 64GB memory, 1x RTX 5080
  • 1 modeling server with: 2 x 48-core Xeon, 2TB memory, 4 x RTX 4090 GPU

Workflows

  • Brute force, Monte Carlo, & stochastic implementation of machine learning algorithms
  • Canning custom scripts into GUI standalone programs
  • Modeling 3D surfaces using satellite SAR data
  • Processing drone-based LiDAR

Our Mission

The intent of the SP&M Lab is to combine and streamline complex workflows to develop integrated surface process models that will elucidate landscape evolution, hazard prediction & response under changing climate regimes, and associated risk to small rural communities.

Featured Projects

View All Lab Projects

Flood Modeling

Flood Modeling visualizationFlood Modeling visualization
Advanced flood modeling using sub-grid sampling techniques for computational efficiency while preserving critical channel detail. Our approach enables rapid analysis of flood scenarios across large geographic areas.

Advanced flood modeling using sub-grid sampling techniques for computational efficiency while preserving critical channel detail. Our approach enables rapid analysis of flood scenarios across large geographic areas.

Started: November 2024

Status: active

Project URL: View Project →

Products & Outcomes:

  • 1st SP&M-enabled publication in review, 2nd in preparation
  • 2 training workshops scheduled (UK-KGS-Morehead collaboration)

Monte Carlo Analysis

Monte Carlo Analysis visualizationMonte Carlo Analysis visualization
Comprehensive assessment of machine learning approaches for landslide susceptibility modeling in Kentucky's diverse geological settings. This research focuses on developing robust, statistically validated models for landslide hazard prediction.

Comprehensive assessment of machine learning approaches for landslide susceptibility modeling in Kentucky's diverse geological settings. This research focuses on developing robust, statistically validated models for landslide hazard prediction.

Research Focus:

  • Detailed analysis of relationship between inventory and susceptibility results
  • Thousands of models generated within sensitivity assessment framework
  • Comprehensive evaluation of different machine learning algorithms (SVM, LR, NB, BT)
  • Statistical validation using AUC and model performance metrics
  • Regional adaptation for Appalachian terrain characteristics

The project employs multiple machine learning algorithms including Support Vector Machine (SVM), Logistic Regression (LR), Naive Bayes (NB), and Boosted Trees (BT) to create the most accurate susceptibility models for Kentucky's unique geological conditions.

Status: active

Products & Outcomes:

Ongoing Activities:

  • Statewide landslide inventory compilation and validation
  • Multi-algorithm performance comparison study
  • Climate-informed susceptibility modeling development

Latest SP&M News

View All News
Research

SP&M Lab Updates: Exciting Developments in Landslide Research and Flood Modelling

The Surface Processes & Modelling Laboratory (SP&M) at the Kentucky Geological Survey (KGS) is making significant strides in research and collaboration, including welcoming an esteemed international scholar, publishing research, and securing new funding. The SP&M Lab is funded by the NSF EPSCoR 'Climate Resilience through Multidisciplinary Big Data Learning, Prediction & Building Response Systems (CLIMBS)' award, which aims to advance Kentucky's climate resiliency through hazard assessment based on Kentucky-specific scientific research.

Research

KGS Unveils State-of-the-Art Lab for Flood Modeling Research

The Kentucky Geological Survey (KGS) opened a new computational lab on the third floor of the Mining and Mineral Resources Building in January 2025. The Surface Processes and Modelling Laboratory (SP&M Lab) was funded by the NSF EPSCoR ‘Climate Resilience through Multidisciplinary Big Data Learning, Prediction & Building Response Systems (CLIMBS)’ award, which aims to advance Kentucky’s climate resiliency through hazard assessment based on Kentucky-specific scientific research.

Contact & Location

Surface Processes & Modeling Laboratory workspace

Surface Processes & Modeling Laboratory

Mining and Mineral Resources Building, RM 348-B, 310 Columbia Avenue
Lexington, KY 40508

Principal Investigator

Jason Dortch

Jason Dortch

Geologist V

Jason.M.Dortch@uky.edu

📞 859-323-0547

Research Team

Sarah Arpin
Sarah Arpin

Geologist II

researcher

Sarah.Arpin@uky.edu

Hudson Koch
Hudson Koch

Geologist II

researcher

hkoch@uky.edu

Affiliated Faculty

Brent Harrison
Brent Harrison

Associate Professor

collaborator

Sarah Johnson
Sarah Johnson

Research Assistant Professor

affiliate

Ryan  Thigpen
Ryan Thigpen

Associate Professor

affiliate

Students

Mackenzie Choffel

MS Student

student

Luciano Cardone

Ph.D Student

student